Efficient upconvertion of photoluminescence via two-photon-absorption in bulk and nanorod ZnO

نویسندگان

  • Shula Chen
  • Jan Eric Stehr
  • N. Koteeswara Reddy
  • C. W. Tu
  • Weimin Chen
  • Irina Buyanova
  • S. L. Chen
  • J. Stehr
  • W. M. Chen
چکیده

Efficient upconversion of photoluminescence (PL) from donor bound excitons is revealed in bulk and nanorod ZnO. Based on excitation power dependent PL measurements performed with different energies of excitation photons, two-photon-absorption (TPA) and two-step TPA (TS-TPA) processes are concluded to be responsible for the upconversion. The TS-TPA process is found to occur via a defect/impurity (or defects/impurities) with an energy level (or levels) lying within 1.14-1.56 eV from one of the band edges, without involving photon recycling. One of the possible defect candidates could be VZn. A sharp energy threshold, different from that for the corresponding one-photon absorption, is observed for the TPA process and is explained in terms of selection rules for the involved optical transitions. PACS number(s): 78.55.Et, 71.35.Gg, 71.55.Gs * E-mail:[email protected] 2

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Effect of Annealing, Synthesis Temperature and Structure on Photoluminescence Properties of Eu-Doped ZnO Nanorods

In this study un-doped and Eu-doped ZnO nanorods and microrads were fabricated by Chemical Vapor Deposition (CVD) method. The effects of annealing, synthesis temperature and structure on structural and photoluminescence properties of Eu-doped ZnO samples were studied in detail. Prepared samples were characterized using X-Ray diffraction (XRD), scanning electron microscopy (SEM), particle size a...

متن کامل

Structural, optical and dielectric studies in ZnO nanorods by microwave assisted method

ZnO nanorod was prepared by microwave assisted method. The crystal structure of the nano powders were confirmed by X-Ray diffraction analysis and the mean particle size was estimated by the Scherrer,s formula .The surface morphology of the nano particles were analyzed by   using SEM . The absorption spectrum of the material in the UV-Vis range was recorded .The energy band gap of the...

متن کامل

Structural, optical and dielectric studies in ZnO nanorods by microwave assisted method

ZnO nanorod was prepared by microwave assisted method. The crystal structure of the nano powders were confirmed by X-Ray diffraction analysis and the mean particle size was estimated by the Scherrer,s formula .The surface morphology of the nano particles were analyzed by   using SEM . The absorption spectrum of the material in the UV-Vis range was recorded .The energy band gap of the...

متن کامل

Sunlight Photocatalytic Activity Enhancement of WO3/ZnO Nanorod Composites for Degradation of Bisphenol A

Nanoscaled WO3 particles coated on ZnO nanorod composites were fabricated through combining hydrothermal technique with chemical precipitation process. The configuration, crystal structure and element composition of the as-prepared WO3/ZnO nanorods were characterized by field-emission scanning electron microscopy (FESEM), transmission electron microscope (TEM) along with a high resolution trans...

متن کامل

Synthesize and Optical properties of ZnO: Eu Microspheres Based Nano-sheets at Direct and Indirect Excitation

Europium (Eu) doped ZnO microsphere based nano-sheets were synthesized through hydrothermal method. Effects of different concentrations of Europium on structural and optical properties of ZnO nano-sheets were investigated in detail. Prepared un-doped and Eu-doped ZnO samples were characterized using X-Ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDX), scanning electron micro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012